If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4q^2+5q=6
We move all terms to the left:
4q^2+5q-(6)=0
a = 4; b = 5; c = -6;
Δ = b2-4ac
Δ = 52-4·4·(-6)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-11}{2*4}=\frac{-16}{8} =-2 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+11}{2*4}=\frac{6}{8} =3/4 $
| 12y-14=9y+13 | | 7x-4=3x+8= | | 17x+2+18x-2=180 | | 20h-15(h+5)=355 | | –7p+5=–3p–31 | | 1-5y-6y=0 | | 2(5-2)=10x-4 | | x^=1 | | 7+5c-2c=0 | | 8(10^y+3)=30−5(1−10^y) | | 32x+22=21x+14 | | 20h+15(h-5)=355 | | 9t^2-18t+2=0 | | 3-5z=-21 | | -16x+36x-8=0 | | 250/x=1.9 | | 1/4g-(-3)=-11/4 | | 3x^2+33x-4.7=0 | | 8/89=10/x | | 12j=24 | | -15/8m-9=9 | | 15/8m-4=21 | | 7x²-112=0 | | n2-10n+13=0 | | 1.75=-0.2x | | −8x2−6x−x3−5x4+8x=2 | | 3d^2-5d+2=0 | | -10x2x-18=6 | | 3x^2+1=50 | | 6×-5=8-4(2x+7) | | 3-5w-2w=0 | | 6-7a-5a=0 |